Python – How to add value labels on a bar chart

bar chartmatplotlibpandaspythonseaborn

I got stuck on something that feels like should be relatively easy. The code I bring below is a sample based on a larger project I'm working on. I saw no reason to post all the details, so please accept the data structures I bring as is.

Basically, I'm creating a bar chart, and I just can figure out how to add value labels on the bars (in the center of the bar, or just above it). Been looking at samples around the web but with no success implementing on my own code. I believe the solution is either with 'text' or 'annotate', but I:
a) don't know which one to use (and generally speaking, haven't figured out when to use which).
b) can't see to get either to present the value labels.
Would appreciate your help, my code below.
Thanks in advance!

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
pd.set_option('display.mpl_style', 'default') 
%matplotlib inline

# Bring some raw data.
frequencies = [6, 16, 75, 160, 244, 260, 145, 73, 16, 4, 1]

# In my original code I create a series and run on that, 
# so for consistency I create a series from the list.
freq_series = pd.Series(frequencies)

x_labels = [108300.0, 110540.0, 112780.0, 115020.0, 117260.0, 119500.0, 
            121740.0, 123980.0, 126220.0, 128460.0, 130700.0]

# Plot the figure.
plt.figure(figsize=(12, 8))
fig = freq_series.plot(kind='bar')
fig.set_title('Amount Frequency')
fig.set_xlabel('Amount ($)')
fig.set_ylabel('Frequency')
fig.set_xticklabels(x_labels)

enter image description here

Best Answer

Firstly freq_series.plot returns an axis not a figure so to make my answer a little more clear I've changed your given code to refer to it as ax rather than fig to be more consistent with other code examples.

You can get the list of the bars produced in the plot from the ax.patches member. Then you can use the technique demonstrated in this matplotlib gallery example to add the labels using the ax.text method.

import pandas as pd
import matplotlib.pyplot as plt

# Bring some raw data.
frequencies = [6, 16, 75, 160, 244, 260, 145, 73, 16, 4, 1]
# In my original code I create a series and run on that,
# so for consistency I create a series from the list.
freq_series = pd.Series(frequencies)

x_labels = [
    108300.0,
    110540.0,
    112780.0,
    115020.0,
    117260.0,
    119500.0,
    121740.0,
    123980.0,
    126220.0,
    128460.0,
    130700.0,
]

# Plot the figure.
plt.figure(figsize=(12, 8))
ax = freq_series.plot(kind="bar")
ax.set_title("Amount Frequency")
ax.set_xlabel("Amount ($)")
ax.set_ylabel("Frequency")
ax.set_xticklabels(x_labels)

rects = ax.patches

# Make some labels.
labels = [f"label{i}" for i in range(len(rects))]

for rect, label in zip(rects, labels):
    height = rect.get_height()
    ax.text(
        rect.get_x() + rect.get_width() / 2, height + 5, label, ha="center", va="bottom"
    )

plt.show()

This produces a labeled plot that looks like:

enter image description here

Related Question