Python – How to convert list of numpy arrays into single numpy array


Suppose I have ;

LIST = [[array([1, 2, 3, 4, 5]), array([1, 2, 3, 4, 5],[1,2,3,4,5])] # inner lists are numpy arrays

I try to convert;

array([[1, 2, 3, 4, 5],
       [1, 2, 3, 4, 5],
       [1, 2, 3, 4, 5])

I am solving it by iteration on vstack right now but it is really slow for especially large LIST

What do you suggest for the best efficient way?

Best Answer

In general you can concatenate a whole sequence of arrays along any axis:

numpy.concatenate( LIST, axis=0 )

but you do have to worry about the shape and dimensionality of each array in the list (for a 2-dimensional 3x5 output, you need to ensure that they are all 2-dimensional n-by-5 arrays already). If you want to concatenate 1-dimensional arrays as the rows of a 2-dimensional output, you need to expand their dimensionality.

As Jorge's answer points out, there is also the function stack, introduced in numpy 1.10:

numpy.stack( LIST, axis=0 )

This takes the complementary approach: it creates a new view of each input array and adds an extra dimension (in this case, on the left, so each n-element 1D array becomes a 1-by-n 2D array) before concatenating. It will only work if all the input arrays have the same shape—even along the axis of concatenation.

vstack (or equivalently row_stack) is often an easier-to-use solution because it will take a sequence of 1- and/or 2-dimensional arrays and expand the dimensionality automatically where necessary and only where necessary, before concatenating the whole list together. Where a new dimension is required, it is added on the left. Again, you can concatenate a whole list at once without needing to iterate:

numpy.vstack( LIST )

This flexible behavior is also exhibited by the syntactic shortcut numpy.r_[ array1, ...., arrayN ] (note the square brackets). This is good for concatenating a few explicitly-named arrays but is no good for your situation because this syntax will not accept a sequence of arrays, like your LIST.

There is also an analogous function column_stack and shortcut c_[...], for horizontal (column-wise) stacking, as well as an almost-analogous function hstack—although for some reason the latter is less flexible (it is stricter about input arrays' dimensionality, and tries to concatenate 1-D arrays end-to-end instead of treating them as columns).

Finally, in the specific case of vertical stacking of 1-D arrays, the following also works:

numpy.array( LIST )

...because arrays can be constructed out of a sequence of other arrays, adding a new dimension to the beginning.